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Abstract

14This thesis presents an algorithm for one-dimensional compaction of VLSI
layouts. It differs from older methods in treating wires not as objects to be

- moved, but as constraints on the positions of other circuit components. These
constraints are determined for each wiring layer using the theory of planar
routing. Assuming that the wiring layers can be treated independently, the
algorithm minimizes the width of a layout, automalically inserting as many
jogs in wires as necessary. It runs in time O(n) on input of size n.
-Several heuristics are suggested for improving the algorithm's practical
performance.

The compaction algzrithm takes as input a data structure called a sketch,
* which explicitly distinguishes between flexible components (wires) and rigid

components (modules). The algorithm first finds constraints on the positions
of modules that ensure enough space is left for wires. Next, it solves the
system of constraints by a standard graph-theoretic technique, obtaining a
placement for the modules. It then relies on a single-layer router to restore

C) the wires to each circuit layer. An efficient single-layer router is already
C.* .known; it is able to minimize the length of every wire, though not the number

* of jogs.

.As given, the compaction algorithm applies only to a VLSI model that requires
wires to run a rectilinear grid. This restriction is needed only because the
theory of planar routing (and single-layer routers) has not yet been extended
to other models.r-.The compaction algorithm's correctness proof elucidates the
assumptions on which the algorithm depends, so that the algorithm is easily
generalized once th necessary theoretical machinery is in place.
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Abstract

This thesis presents an algorithm for one-dimensional compaction of VLSI lay-
outs. It differs from older methods in treating wires not as objects to be moved, but
as constraints on the positions of other circuit components. These constraints are
determined for each wiring layer using the theory of planar routing. Assuming that
the wiring layers can be treated independently, the algorithm minimizes the width
of a layout, automatically inserting as many jogs in wires as necessary. It runs in

time 0(n 4 ) on input of size n. Several heuristics are suggested for improving the
algorithm's practical performance.

The compaction algorithm takes as input a data structure called a 8ketch, which
explicitly distingushes between flexible components (wires) and rigid components
(modules). The algorithm first finds constraints on the positions of modules that
ensure enough space is left for wires. Next, it solves the system of constraints by a
standard graph-theoretic technique, obtaining a placement for the modules. It then
relies on a single-layer router to restore the wires to each circuit layer. An efficient
single-layer router is already known; it is able to minimize the length of every wire,
though not the number of jogs.

As given, the compaction algorithm applies only to a VLSI model that requires
wires to run a rectilinear grid. This restriction is needed only because the theory of
planar routing (and single-layer routers) has not yet been extended to other models.
The compaction algorithm's correctness proof elucidates the assumptions on which
the algorithm depends, so that the algorithm is easily generalized once the necessary
theoretical machinery is in place.
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1. Introduction

An automated compaction procedure is an effective tool for cutting the production
costa of a VLSI circuit at low cost to the designer because the yield of fabricated
chips is strongly dependent on the total circuit area. An effective compaction system
also reduces design time by freeing the designer from continual concern over design
rules. If excess layout space can be removed automatically, the designer can sketch
a layout without making continual efforts to conserve area. For these reasons,
compaction algorithms have gained widespread attention in the VLSI literature
[4, 5, 9, 11], and have been incorporated into many recent computer-aided circuit
design systems [2, 4, 10, 18].

Most compaction algorithms, including the one described here, compress a lay-
out in one dimension only. To reduce both dimensions, the layout is alternately
compacted in z and y until no further improvement can be found. Compaction
in two dimensions simultaneously is theoretically difficult (in fact, NP-complete),
although it may work well in practice [5]. In this thesis, I assume for convenience
that the direction of compaction is horizontal.

1.1. Conatraint-baaed compaction

Many one-dimensional compaction systems [4,101 use a constraint-based tech-
nique. The program begins by assigning to each layout component i a variable zi
that represents the z-coordinate of the component's leftmost point. The design
rules of the fabrication process are then used to derive constraints on the positions
of the components. For example, if device i lies to the left of device j, and such
devices must remain at least 2 units apart in order to function reliably, the com-
pactor generates a constraint xz - zi 2+ w,, where w, is the width of component i.
(We make the usual assumption that components are not allowed to jump over one
another.)

The design rules lead naturally to a set of constraints with nice prr trties. First
of all, the constraints are not especially difficult to compute (9]. Second, they are
sufficient to guarantee that the compacted layout is legal. Third, they are necessary
if components cannot jump over one another. Fourth, the constraints are simple
linear inequalities: they all can be represented in the form

where zi and z, are two of the variables assigned to layout components, and ai is
a constant.

Because of the simple form of the inequalities, they can be solved efficiently
by graph-theoretic techniques. One constructs an edge-weighted graph in which
the ith vertex represents the variable z,, and in which an edge of weight aq from
node z to node z, represents the constraint zi - z, > aq. An assignment to the
variables z, that satisfies all the constraints is then determined by a longest-path

a.. 3
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computation on the graph. The resulting values specify the optimal positions of
the components in the compacted layout. A good introduction to constraint-based
compaction may be found in [51; common algorithms for computing longest paths
are discussed in [8]. (Most of the literature discusses the computation of shortest
paths, but finding longest paths is equivalent to finding shortest paths when positive
edge weights are replaced by negative, and vice versa.)

In the course of my research I stumbled upon an improvement to constraint-
based compaction that deserves to be more widely known. If the initial layout
satisfies the design rules, then Dijkstra's algorithm can be used to compute longest
paths in the constraint graph. The trick is to write all the constraints in terms
of displacements, of components from their original positions, rather than absolute
coordinates. If d, and di represent the horizontal displacements of modules i and j
from their original positions, and di - d, _ aq is a constraint, then the legality of
the initial layout means that the inequality di - d, aj holds when di = d. = 0.
In other words, the constant aq. is nonpositive. Thus all the edges in the constraint
graph have nonpositive weight, which is precisely the precondition of Dijkstra's
algorithm. (Usually Dijkstra's algorithm is used to find shortest paths, in which case
the edge weights must be nonnegative, rather than nonpositive.) The improvement
in worst-case performance is dramatic. To quantify it, I denote the size of a data
structure D by ID1. If the constraint graph is (V, E), then Dijkstra's algorithm
runs in time O(IE + IVI log IVI) using Fibonacci heaps [3]. In contrast, the longest-
path algorithm of Bellman and Ford, which handles edge weights of both signs, can
require fl(IVlIEI) time.

1.2. Automatic jog introduction

In order to perform any sort of compaction, the components of the layout must
be differentiated into modules, which are fixed in size and shape, and wires, which
are flexible. Common procedures for generating design rule constraints 14,5,9] as-
sume that wires are simply rectangular regions of variable height or width, and
otherwise identical to modules. A vertical wire, for example, would be assigned an
z-coordinate during horizontal compaction, and could only be moved rigidly from
side to side. But one would often like a previously straight wire to bend around an
obstacle during compaction, if the area of the circuit could thereby be reduced.

This problem is not easily overcome. Many systems [4,181 attempt to solve it
by allowing the designer to specify jog point, at which wires may bend. In effect,
the wires are broken into subwires at the jog points. Compaction then becomes
an interactive procedure in which the designer repeatedly examines the compacted
layout, adds more potential jog points, and retries the compaction operation. Other
systems [4] attempt to insert jogs automatically, using ad hoc techniques which are
not guaranteed to be effective. One technique that will work is to insert a jog point
wherever a wire could possibly bend. If the wires are restricted to run in a grid, the
number of such jog points can be made polynomial in the size of the input layout,
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since no wire need bend at a point far from a layout component. This technique,
however, consumes large amounts of time and memory, and it does not generalize
well to situations in which the grid is absent.

The polynomial-time algorithm presented in this paper has the capability to
introduce every jog point that helps to reduce the layout width. It can thus be
expected to produce high quality output with little designer intervention. Auto-
matic jog introduction is achieved by treating wires not as solid objects, but only as
indicators of the topology of the layout. Constraints between modules no longer ex-
press design rules directly; instead, they ensure that there exist paths for the wires,
having the given topology, that satisfy the design rules. The new constraints, called
routability conditions, can be formulated as simple linear inequalities, and solved as
usual. When the optimal module placements have been established, the new wire
paths are determined by a single-layer router, such as that presented in [6]. That
particular router has the advantage of generating no "empty U's," and therefore
minimizes wire lengths in the given layout topology.

We need consider only planar compaction problems, as long as wires on different
layers can routed independently. Illegal layouts could be generated if there were
design rule constraints between wires on different layers; fortunately, there are no
problematic constraints in the most common VLSI technologies. In a standard
nMOS process with one layer of metal, for example, the polysilicon and diffusion
layers can be considered as one layer, or plane [14], for routing purposes, and metal
the other plane. If transistors are considered to be modules, then the wiring in each
plane contains no crossovers. Furthermore, wires on the two planes interact only
at contact cuts, which are also represented as modules. Thus one can reduce the
problem of layout compaction to a pair of single-layer compaction problems, and
compute the constraint systems on each of the two planes. Since some modules
extend into both planes, the resulting constraint systems are merged by choosing
the most restrictive constraint between every pair of modules. The merged system
is then solved normally to place the modules.

The approach to compaction presented here depends on the ability to generate
complete routability conditions for a planar layout. Until recently, such conditions
were known only for certain channel routing problems [7,16]. The present work
is made possible by the theory of planar routing developed in [1] and [6]. At the
time of writing (April 1986), this theory considers only a VLSI model that restricts
wires to a rectilinear grid. For this reason, I present the compaction algorithm in a
grid-based VLSI model. My current research aims to generalize the theory of planar
routing to a much larger class of models, including "octagonal" grid-based models
as in [17], and models allowing wire segments of arbitrary slope. Once this work
is complete, the compaction algorithm will generalize naturally to those models.
In fact, my compaction algorithm is an implementation of a more abstract and
general compaction technique that works in any model with the properties listed in
Section 5.
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1.3. Organization of the paper

The remainder of this paper is organized as follows. Section 2 states the defini-
tions and theoretical results that underlie the new compaction method. Section 4
details the top level of the compaction algorithm, using a subroutine described and
justified in Section 3. The next two sections (5 and 6) prove the correctness of
an abstract compaction technique, which is shown in Section 7 to contain my com-

paction algorithm as a special case. I conclude in Section 8 with some improvements
of my compaction algorithm, and a discussion of its practical value.

2. Sketches and planar routability

The principal data structure used by the compaction algorithm is called a sketch.
A sketch represents one plane of a VLSI circuit, including both rigid objects and
flexible interconnecting wires. The algorithms in this paper process only one sketch
at a time, without loss of generality. This section defines precisely what I mean by
a sketch, and states the theorem from [6] that determines routability conditions for
a sketch.

2.1. Definition of a sketch

A sketch is an ordered pair (F, W) consisting of a finite set F of features, which
are points and straight line segments, and a finite set W of wires, which are simple
paths in the plane. Figure 1 shows an example of a sketch. Modules are represented
as collections of features, because for technical reasons, terminals must be separated
from other features. The features and wires of a sketch must satisfy the following
conditions:

(1) Distinct components of the sketch (features and wires) may intersect only at
their endpoints.

(2) Distinct wires may not intersect, and no wire may cross itself.

(3) Each wire touches exactly two features, which are single points lying at the
endpoints of the wire. They are called the terminals of the wire.

(4) Four of the features of the sketch form a bounding box around the other
components.

When referring to "points in the sketch," we will mean points lying on features

in the sketch. Connected groups of features are called the obstacle, of the sketch.
The definitions imply that each terminal is its own obstacle. Features represent the
rigid parts of the layout, the modules; wires represent the flexible interconnections.
Clearly, a sketch whose wires are well behaved (e.g., consist of line segments) can
easily be encoded in a data structure.

.'

2.2. Legality and routability

I now define what it means to route a sketch, and what it means for a sketch ,

to represent a legal layout. For more precise definitions, see 161. A link in a sketch

6
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Figure 1. A typical sketch. Dark points and line segments are features, grey lines
are wires, and light lines are conceptual module boundaries.

S = (F, W) is a path in the plane that begins and ends on features in F, and
intersects no features in between. For example, the wires in W are links in S.

* Two links in S are /omotopic if they have the same endpoints, and one can be
continuously deformed into the other without moving its endpoints or allowing its
interior to touch a feature in F. A routing of S is a sketch (F, W') whose features
are the same, and whose wires can be obtained by replacing each wire in W with
a homotopic wire. A sketch is said to be legal if it represents a legal VLSI layout,
which for our purposes means that the following conditions hold:

(1) All obstacles and wires lie in the rectilinear grid of unit spacing.
* (2) The wires form vertex-disjoint paths in the grid.

Figure 3. A legal routing of the sketch in Figure 1, using wires of minimum length.
Dotted lines represent the routing grid.

A sketch is routable if it has a legal routing. Using the algorithm in [1,b a legal
routing of a routable sketch can be found in polynomial time. Figures 1 and 2
illustrate the concepts of legality and routability. The sketch in Figure 1 is illegal
because it contains curved wires. Nevertheless, it is routable, and one of its legal
routings is shown in Figure 2.

* 5 7
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2.3. Routability conditions

My compaction algorithm is based on a theorem from [61 that characterizes the
routable sketches in terms of the following concepts. If p = (z,,yp) and q = (zq,q)
are points in the sketch S, then p- denotes the open-ended line segment from p to q.
Such a segment is called a cut if it intersects no features in S. The capacity of a
cut V is the maximum number of wires that can legally cross f'; in symbols,

cap() = max{z,- z-4, I,'q - yl, 1} - 1

The flow across p, denoted flow(pl), is the number of crossings of T- that are
enforced by the topology of the sketch. (See Figure 3.) Crossings of PT that can be
removed by deforming the wires W do not contribute to the flow. More formally,
flow(V-) is the minimum, over all routings (F,W') of (F,W), of the number of times
p is crossed by wires in W'.

Figure 3. A portion of a sketch with a cut Vq. The How across M is 1.

The routability of a sketch is completely determined by the flows and capacities
of its cuts. Let us say that a cut is sale [1] if its flow does not exceed its capacity.
Then we have the following result.

Lemma 1. [6] A sketch that contains an unsafe cut is unroutable.

More significantly, the converse is true (except when the features of the sketch are
illegally placed): a sketch that contains no unsafe cuts is routable. In fact, this
statement may be strengthened. A critical cut g is one such that p is the endpoint

of a feature, and q is the closest point on its feature to p. The critical cuts are the
only important ones.

Theorem 2. [61 The sketch (F, W) is routable if and only if (F, 0) is legal
and every critical cut in (F, W) is safe.

The inequalities flow(p) cap(pq) for the cuts p of a sketch are called routability
conditions for the sketch. Constraints of this sort will be used by the compaction
algorithm to determine the optimal positions for layout features.

3. Computing flows In the sketch

..This section describes a procedure used to facilitate the computation of routabil-

ity conditions for a sketch. As suggested by Theorem 2, the important attributes
•8 ....
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.of a sketch are the flows and capacities of cuts. Capacities are purely geometric
quantities, and can be computed from endpoint locations in constant time. In addi-
tion, they vary in a regular way with the movement of features during compaction.
Flows, on the other hand, are topological quantities, and are relatively difficult to
compute. Moreover, they depend in complex ways on the positions of features.
Thus to compute flows, we require a data structure that captures the topology of
the sketch and that is invariant under compaction. I begin by presenting such a
structure.

3.1. The adjacency graph

The data structure we use is called the adjacency graph of the sketch. Its
construction is straightforward, and is illustrated by Figure 4. From a point on the
rightmost edge of each obstacle, except the bounding box, a line is drawn rightward
until it hits another obstacle. These line segments and rays will be called hurdles.
Now each wire is replaced by a homotopic wire that intersects as few hurdles as
possible, making sure that no two wires cross. The resulting set of objects forms
a planar graph: its nodes are obstacles and burdle/wire crossings, and its edges
are pieces of wires and hurdles. The planar dual of this graph, which is actually a
multigraph, is the adjacency graph of the sketch. A node of the adjacency graph
corresponds to a face of the original graph, and is said to border on the points
forming the boundary of that face. The adjacency graph does not change during
horizontal compaction because hurdles can only slide back and forth, and we will

4 'gnot allow wires or features to cross over one another.

;" Fgure 4. The adjacency graph of the sketch in Figure . Dashed lines are hurdles,
and circles are nodes of the adjacency graph. Wherever two such nodes are adjacent
across a wire or hurdle, there is a "wire edge" or "hurdle edge", respectively, in the

adjacency graph. These edges are omitted for clarity. Adjacency across features is
not represented in the adjacency graph.

The purpose of the hurdles is to relate links in the sketch to the sketch topology. .'
•Consider the sequence of hurdles crossed by a link, in order, together with the

" directions of crossing. Such a hurdle sequence can be put into a canonical form
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by removing all unnecessary crossings, that is, all places where the link crosses a
hurdle and immediately crosses back in the other direction. One can show that two
links with the same endpoints have the same canonical hurdle sequence if and only
if they are homotopic.

Constructing the adjacency graph of a sketch is not difficult. Let (F, W) be
the sketch. One first computes the canonical hurdle sequence of each wire, and
forms the graph whose nodes are the sketch obstacles and the necessary hurdle/wire
crossings. Since every wire segment could cross every hurdle, this process might
require e(IFIIWI) time and space, but will probably need much less. (Recall that
IDI denotes the size of the data structure D. Thus IWI is not the number of wires,
but rather the number of line segments that compose them.) Since the direction of

each crossing is known, one has enough information about the embedding of this
graph to construct its dual graph. Building the dual graph is straightforward; one
simply walks around the faces of the original graph, creating dual nodes and edges
as necessary. The time and space taken by this construction are both proportional
to the size of the dual graph.

3.2. Computation of flows

An appropriate search through the adjacency graph can compute the flow across
a cut. To see how, notice that there are two kinds of edges in the adjacency graph:
"wire edges," which represent adjacency across a wire, and "hurdle edges," which
represent adjacency across a hurdle. A path through the adjacency graph thus has 0 ;
a hurdle sequence determined by the hurdle edges it contains. The following lemma
demonstrates the correspondence between the canonical hurdle sequence of a cut
and hurdle sequences of paths. By the length of a path in the adjacency graph we
mean the number of wire edges the path contains.

Lemma 3. Suppose that a cut p of sketch S has hurdle sequence H. Let
Paths(P'q) be the set of paths in the adjacency graph of S that begin at a node
bordering on p, end at a node bordering on q, and have hurdle sequence H.
Then flow(p-) is equal to the length of the shortest path in Paths(fq). El

The proof of this lemma requires too much background material to be presented
here.

To make use of Lemma 3, we must be able to find shortest paths with given hur-
dle sequences in the adjacency graph. This involves searching through a subgraph
of the adjacency graph.

Definition. The skeleton of an adjacency graph G is the graph T consisting
of the nodes and wire edges of G.

Lemma 4. The skeleton T of an adjacency graph G is a tree, and it has the
following properties.

(1) If h is a hurdle, the set of nodes bordering h from below (or above) is

connected in T.

10
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(2) If b and Y are two nodes bordering a hurdle h from below, and a and
a! are adjacent to b and b', respectively, across h, then the distance
between a and a' in T is equal to the distance between b and Y/ in T. 0

These properties help in proving the correctness the following algorithm, which
computes the flow across a cut V'. We may assume that each hurdle in the hurdle
sequence of p' is to be crossed from bottom to top.

Algorithm F. (Computes the flow across a cut.)
Input: a cut R with hurdle sequence (hl,..., h,,), the adjacency graph G with

skeleton T.
Output: the flow f across p•
Local variables: integers i and t, nodes u and v.

1. f -- min{DIST-FROM(w) : w borders on p);
2. function DIST-FROM(w);
3. t+-O;u*--w;
4. for i +- 1 to n do

begin
5. v 4- a node bordering h, from below that is closest to u in T;
6. t- t + the distance from u to v in T;
7. u -- the node adjacent to v across hurdle h,;

end;
8. v +- a node bordering q from below that is closest to u in T;
9. return t + the distance from u to v in T.

In other words: for each node bordering on p, find the shortest path to the first
hurdle, cross the first hurdle, find the shortest path from there to the second hurdle,
and so on. Breadth-first search can be used to implement lines 5-6 and 8-9. This
approach may work well in practice, but its worst-case behavior is poor; it could
require fl(nIT!) time on a hurdle sequence of length n. Later in this section, I show
how to implement Algorithm F more efficiently.

3.3. Correctness of Algorithm F

The correctness of Algorithm F follows from Lemmas 3 and 4.

Lemma 5. Let V' be a cut in a sketch S, let G be the adjacency graph of S,
.. '" and let (h1 , ... , hn) be the hurdle sequence of p-. Then Algorithm F, when
. applied to P and G, outputs flow(p).

Proof. The function DIST-FROM computes the length of some path with hurdle sequence
(h-, .... , h,,) from w to a node bordering q. If w borders on p, then all such paths have length
flow(p7) or greater by Lemma 3. So it suffices to show that DIST-FROM(w) _ flow(P' )
for some w bordering on p. By Lemma 3, there exists a path r in G that begins at a node
bordering p, ends at a node bordering q, and has hurdle sequence (h1,... ,nAh) and length
flow(f). Let v be the portion of this path up to hurdle hl; for 0 < i < n, let w, be the

'11
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portion of r between hurdles h. and h.,+; let rn be the portion of x beyond hurdle h. .

4Choose w to be the first nods along x.

We consider only the execution of DIST-FROM on w. Define t, and , to be the values
of t and u just after iteration i of the loop in lines 2-5; put to = 0 and tO = w. Denote the
length of a path a in G by f(a). Algorithm F maintains the following invariant:

"-1

There is a path af in G' from ts to the origin of ri such that t(p,) + t 5 )
j=0

In particular, after the loop completes, we have
'Z" ft-I

t(a.) + 4.< ,)
j=O

Let T be the skeleton of G. The concatenation of a, and x,,, written a. • jr., is a path in
T from u. to a node bordering q. Hence by Lemma 3,

DIST-FROM(w) S tn + t(an .. ,,)

= (e(,1) + t.) + £(,,)

< (rm(-) + for.)
j=0

= 1(r) = ftow( ).

Thus the invariant implies the lemma.

14: 0 - 0

"" " O - 0

O -0'

', Figure 5. The inductive step in proving the correctness of Algorithm F.

It remains to prove the invariant, which we do by induction on i. The basis case i = 0
is trivial. Now assuming the invariant for i, we prove it for " + 1. See Figure 5. The path
p, represents a shortest path in T from ui to a node bordering hi+ from below, and the
paths *,+L and ai 1 are the shortest paths in T between the indicated nodes. Since T is
a tree, the shortest path between two nodes in T is the unique simple path between them.

12
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In particular, c4. , is the unique simple path between its endpoints. Now by part (1) of

Lemma 4, the nodes adjacent to h+ from below are connected in T, and hence every node
along ci +l is adjacent to k. , from below. It follows that pi -a.+ is a simple path-the
shortest path between u, and the end of wi-and thus we have S

(p,) + I(C: ) _< f(a) + t(w,).

Combining this inequality with the induction hypothesis, we obtain

(ti + '(P,)) + 1014 1) :5 foi).
JnO

The first term on the right is just t.. 1 , and part (2) of Lemma 4 shows that I(alj+1 ) -- =(o ).

We conclude that the invariant holds for i + 1. 0

3.4. Data struetures for Algorithm F

The most time-consuming steps of Algorithm F involve searching through the
skeleton T of the adjacency graph. One can speed up these searches by taking

advantage of the fact that T is a tree. The first task is to preprocess T so that one
can quickly determine the distance between any pair of its nodes, and hence speed

up lines 6 and 9 in Algorithm F. The second task is to preprocess T so that one
can compute efficiently the closest node in a connected subset of T to a given node.

This ability is sufficient to implement lines 5 and 8 of Algorithm F, because the set
of nodes bordering a feature or bordering a hurdle from below is connected in T.

This section shows how the adjacency graph G may be preprocessed so that Algo-

rithm F takes O(log2 IGI) time per iteration. The preprocessing requires O(ITI log' IGI)
time and creates data structures that occupy O(IT I log ITI) space. One could speed

up Algorithm F even further by precomputing the distance between every pair of

nodes in T, but only at the cost of fl(IT12) space.

70

Figure 6. A tree, drawn with solid lines, and its decomposition tree.

The idea is to decompose the graph T recursively, forming a decomposition tree

D on the nodes of T. Figure 6 shows the construction. Let n be the number
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of nodes in the graph T. The separator theorem for trees [12] implies that T
contains a vertex r whose removal disconnects T into subtrees containing at most
in nodes each. Moreover, we can find the vertex r in linear time using depth-
first search to compute the sizes of subtrees. Now we decompose the subtrees of r
recursively, obtaining a decomposition tree for each one. The roots of these trees
become the children of r in the decomposition tree D for T. At each stage of the
decomposition, the sizes of subtrees are reduced by a constant factor, so D has
height O(log ITI). The recursive construction of D takes O(ITI log ITI) time because
it examines each node and edge in T just O(log ITI) times. We store with each
node of T its distance in T from each of its ancestors in D. These distances can
be computed in O(ITI log ITI) time during the construction of D, and their storage
requires e(ITI log ITr) space.

This information allows one to compute quickly the distance between two nodes
of T. One simply finds their lowest common ancestor (LCA) in D, and then adds
their distances (in T) from that ancestor. This procedure takes at most O(log ITI)
time; it works because the LCA in D of two nodes in T either equals one of them
or separates them in T.

Some extra preprocessing is needed before we can compute closest members of
connected sets of T. Let D be the same decomposition tree as above. The LCA in
D of a connected set C C T is a member of C, and we can compute in advance the
LCA's of the connected sets that we care about, which are the following:

" For each hurdle, the nodes in G adjacent to that hurdle from below.
" For each feature, the nodes of G adjacent to that feature.

There are O(IFI) such sets in the sketch (FW). The LCA of each set C can be
computed in O(log IGI log ITI) steps if some node of C is known, assuming that
membership in C can be tested in O(log IGI) time.* Thus the preprocessing of the
connected sets uses O(IFI log IGI log ITI) time and O(IFI) space. We also store, for
each node y and for each of its ancestors z, the highest vertex in D that is interior
to the to the path in T between z and y. In case z and y are adjacent in T, we
store nil instead. To produce this information requires O(ITI log ITI) space and
O(ITI log2 ITI) time.

The following algorithm uses the data from preprocessing in lines 2 and 4.

Algorithm V. (Finds the closest vertex in a connected set C C T to a node u.)
Local variables: nodes v and z.

In practice, membership in C could probably be tested in 0(1) time, since each node of T
would probably have bit-vector to specify which hurdles and features it borders. From a theoretical
point of view, this approach is no good, because it requires O(IFIIGI) bits of storage. If the edge
list of each node of G is kept in an appropriate data structure, then it takes at most O(log IGI) time
to determine whether a node is adjacent to a particular hurdle. Similarly, adjacency to features can
be tested in logarithmic time. This method loses no asymptotic space efficiency.
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1. if u E C then return u;
2. v -LCA(C);
3. if v is not an ancestor of u then u +- LCA(u,v);

repeat
4. z +- the highest vertex in D on the path in T between u and v;
5. if z = nil then return v;
6. if z E C then v -- z else u - z

until falee.

We now check the correctness of Algorithm V. First we show that before every
iteration of the loop, the following invariants hold: (a) v E C but u 0 C; (b) one of
u and v is an ancestor of the other; and (c) the closest node in C to u is the closest
node in C to the original input u. Lines 1-3 serve to establish these invariants. Line
3 does not harm invariant (c), for ifv is not an ancestor of u, then the LCA of u and
v is on every path between u and C. Hence the closest node in C to u is also the
closest node in C to LCA(u, v). Now we check that the loop maintains the invariants.
Invariant (a) is maintained by line 6. That line does not affect invariant (b) either,
because z, u, and v are all on the same branch of D. Invariant (c) can only be
affected if z E C. But in that case, every path from u to C passes through z,
because C is connected. Hence the closest node in C to u is also the closest node in
C to z. Finally, line 4 outputs the correct node; z being nil means that u and v are
adjacent, which makes v is the closest node in C to u. Therefore when Algorithm V
terminates, it produces the correct answer.

It remains to bound the number of iterations of the loop. We bound it by the
height of D, by showing that the height of the vertex z in D decreases by at least
one at each step. Let uo, v0 , and zo be the values of u, v, and z at one iteration, and
let ul, v1, and z, be their values at the next iteration. The path between ul and vi
is a subpath of the path between u0 and vo, so z, is no higher than z0. Suppose they
were the same height. Then LCA(zo, z1) would be a higher node separating z1 from
z0. This node would be on the path between u0 and v0 , contradicting the definition
of zo. Therefore z, is strictly lower than zo. We contlude that Algorithm V runs in
O(log ITI) iterations. Each iteration requires O(log IGI) time due to the membership
test in line 6. Hence Algorithm V finishes in O(log IGI log ITI) time.

4. The compaction algorithm

This section defines mathematically the problem of compaction with automatic jog
introduction, and presents a practical algorithm that solves this problem. Because
the wiring planes can be treated independently, the compaction algorithm considers
only a single plane. It assumes the input is available in the form of a sketch, and
that the input sketch is routable.

4.1. Configuration space

Let the input sketch be denoted by S. For the purpose of compaction, the
,.1,. 15
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obstacles of S must be grouped into modules: collections of features whose relative
positions are fixed. The compactor is allowed to choose a horizontal displacement
for each module. Such a vector of displacements is called a configuration of S. The
configuration d = (d,...,d,) corresponds to a sketch S(d) in which module i has
been shifted right by a distance d. (or left by a distance -d). Thus a configuration d
determines how the features of S(d) are to be placed; we shall consider the wires
of S(d) shortly. If the sketch S has n modules, then the set of all its configurations
is the vector space R', and the origin 0 of this vector space corresponds to the
original sketch.

Using configurations, we can describe how points on modules move during com-
paction. If p is a point in 5, its z and y coordinates will be denoted zP and yp,
respectively. The module in which p lies will be written IA(p), so the horizontal
position of p in the configuration d is zp + d(,). The notation p(d) stands for p
shifted by d, that is, the point (zp + d;,(p), yp). We also let AM(d) be difference in
"-coordinates between q(d) and p(d), namely

Apq(d) = (zq + d(,(q)) - (zp + d.(p))

To disallow the possibility of modules crossing over during compaction, we re-
strict attention to a subset of configuration space. Suppose p and q are points in S
having the same y-coordinate. If q lies to the right of p, then we only wish to con-
sider configurations d in which q(d) lies to the right of p(d). So we let C(S) C R"
be the set of configurations d such that for all points p and q of S with Pv = qv and #-
p. < q., we have Ap,(d) > 0. We call C(S) the configuration space of the sketch S.
The configuration space of S is convex, because it is the intersection of convex sets
of the form

{d E R ' : d,(q) d (p) > Zp - Zq}, p,q E S.

For every configuration d in C(S), the hurdles of S transform nicely to S(d). For
if a hurdle h in S has endpoints p and q, then the line segment in S(d) between
p(d) and q(d) is a hurdle, which we identify with h. Now we can finally make S(d)
into a sketch: S(d) is well defined (up to wire homotopy) by requiring that its wires
have the same canonical hurdle sequences they had in the original sketch S(0).

4.2. Problem statement

The compaction problem is to find a configuration d E C(S) such that S(d)
is routable, and can be routed in minimal width. (The width of a sketch is the
horizontal distance between the leftmost and rightmost points on its features or
wires.) As we have stated it, the compaction problem is generally very difficult;
in fact, it is NP-complete [11]. The reason is that the routability conditions may
not define a convex region of configuration space, and hence the set of acceptable
configurations {d E C(S) : S(d) is routable} can be very hard to search. For
example, consider the sketch in Figure 7. The set of acceptable configurations
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* "falls into two components: those in which the upper module lies entirely to the
right of the lower module, and those in which the opposite is true. Intermediate
configurations correspond to unroutable sketches, and thus the set of acceptable
configurations is not convex. In most optimization problems, including compaction,
one only expects to search a convex subset of the acceptable configurations in order
to achieve a polynomial-time algorithm. The algorithm presented here searches the
largest such region that contains the initial configuration, and thus finds the best
configuration available to any algorithm of its type.

Figure 7. How wires can prevent modules from sliding past one another. If the
upper module is allowed to move to the left of the lower one, the set of acceptable
configurations is not convex.

49 4.3. Algorithm overview

The basic notion underlying the compaction algorithm is that of a potential cut.
For the purposes of this section, a potential cut is a continuous function that defines
for each configuration d E C(S) a line segment between two features in S(d). The
line segment may or may not be a cut, depending on the positions of the features
in S(d). The configuration c is said to protect a potential cut 0 if either ,(c) is not
a cut, or O(c) is a safe cut. (Recall that a cut is safe if its flow does not exceed its
capacity.) The significance of these definitions lies in a reformulation of Theorem 2
in terms of potential cuts:

Let S = (F, W) be a sketch, and let c E C(S) be a vector in its configuration
space. For every endpoint p of a feature in F, and for every other feature
Q in F, let Xpq(c) denote the line segment from p(c) to the closest point
on Q(c). Then Xpq is a potential cut for S, which we call critical. The
sketch S(c) = (F(c), W(c)) is routable if and only if

(1) the sketch (F(c),0) is legal, and
(2) the configuration c protects every critical potential cut of S.

; The compaction algorithm works by finding a subset of configuration space,
determined by simple linear inequalities, whose configurations protect every crit-
ical potential cut. It thereby ensures that the configuration it chooses satisfies
condition (2) above. Condition (1) can be ignored, because for all configurations
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C E C(S), the wireless sketch (F(c), 0) is legal unless its features fail to lie in the
grid. This never happens because the initial sketch (F, W) is assumed to be routable,
a.nd the compaction algorithm never considers nonintegral displacements for mod-
ules. The subspace searched is chosen so as to include the initial configuration. An
overview of the compaction technique follows.

The central problem is to find a simple linear inequality that ensures that a
potential cut, say 0, is protected. One would like to use the routability condition
cap(_(d)) flow(O(d)) as a constraint on the configuration d, but for most poten-
tial cuts 0, this constraint is not a simple linear inequality. The difficulty lies not
with the capacity of 0(d), which is determined solely by the geometry of $(d), and
depends in a simple way on the displacements d,. Rather, the quantity flow(0(d))
is hard to characterize, because it depends on the relation of the line segment 0(d)
to the topology of the sketch S(d).

The solution is to find a specific configuration c such that whenever the potential

cut 0(d) is unsafe, its flow is equal to flow(tk(c)). The constraint cap(?(d)) >

flow(O(c)) is then sufficient to protect t. Moreover, when this constraint is written
in terms of the variables d,, it becomes a simple linear inequality, because the
right hand side is constant. To find c, the algorithm looks for a configuration that
minimizes the capacity of 0, subject to the condition that all critical cuts of smaller
vertical span are safe. These shorter cuts force the other features to the side of 0& on
which they must lie if 0 is ever to become unsafe. If, in this way, the algorithm finds
a configuration c that does not protect t&, then the routability condition for tP(c) is
remembered. Otherwise, the potential cut 0 is ignored.

4.4. Description of the compaction algorithm

Since critical cuts move in nontrivial ways during compaction, it turns out to
be more convenient to consider two simpler types of potential cuts:

e Horizontal cuts incident on feature endpoints.

* Cuts between pairs of feature endpoints.

The constraints generated from these potential cuts turn out to be sufficient to
protect all the critical potential cuts.

The horizontal potential cuts are particularly simple because their flows are
independent of the configuration. These potential cuts are treated first in order to
generate the constraints that prevent features from crossing over one another. A
horizontal potential cut is a function Op. of the form Opq(d) = p(d)q(d), where p
and q are points in the original sketch. Assuming without loss of generality that
Xq > zP, Theorem 2 gives the routability condition

AM(d) _ flow(0p,(d)) + 1, d E C(S).

Since being horizontal implies that flow(Op,(d)) - flow(g) for all d E C(S),
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the constraint is a simple linear inequality

dis(q) - d,) (flow (g) + 1) + (x, - (1) M

on the displacements of p and q. The flow across p" is easily computed by Algorithm
F of the previous section. For each horizontal cut P incident on a feature endpoint,
the algorithm computes a constraint of the form (1). Of course, the constraints are
maintained as a constraint graph I over the variables d,.

The second stage of the algorithm concerns the cuts that are not horizontal.
Let 0 be the set of potential cuts Op. where p and q are feature endpoints with
yp # y.. The height of an element Op. of 4 is the quantity jyp - yqj. This quantity
is independent of configuration. Sort 0 in increasing order of height, forming a
sequence in which flatter potential cuts precede taller ones. After Op E 4 has been
processed, the algorithm can ensure that the output configuration protects 0.

The algorithm examines the elements of 0 in sorted order, and for each one
that proves important, it adds an appropriate constraint to the graph I. The
constraint for a potential cut Op. E 0, with z >2 zp, is computed thus. First,
the algorithm solves the current constraint system I together with the temporary
constraint Ap(d) 0, fixing d,(p), and minimizing dg(q). Call the resulting config-
uration c. If c protects Op., then the constraint set is unchanged; otherwise, the
constraint

dg.q)- d >(p) (x - x) +flow(Op.(c)) + I

is added to I. The new constraint is a simple linear inequality derived from the
routability condition cap(OP(c)) > flow(#P(c)) + 1.

After all the potential cuts in & have been processed, the constraint system I is
complete, and the algorithm solves it using a longest-path algorithm. The resulting
configuration is used to build an output sketch, which is then routed using a single-
layer router such as Algorithm R in [6]. That particular router has the advantage
of being able to minimize the lengths of the wires in the routing.

The compaction algorithm is summarized below. We assume that the left and
right edges of the sketch's bounding box compose modules 1 and n, respectively,
and that the top and bottom edges of the box are ignored.

Algorithm C. (Compacts a sketch horizontally.)
Input: a sketch S = (F, W) with n modules specified.
Output: the compacted sketch.
Local variables: the points p and q, a configuration c, and the constraint graph I

over variables d, (1 < i < n).
Subroutines: Algorithm F is used to compute flows in lines 2 and 5; Dijkstra's

algorithm is used in lines 4 and 7; a single-layer router is used in line 8.

1. Preprocess S as described in Section 3;
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2. Let I be the set of constraints {AM(d) > flow(V) + 1} where g is a horizon-
tal cut with zp < x. and p or q is an endpoint of a feature in F.

3. foreach pair of feature endpoints {p, q} with zp < x. and yp A y., in order of
increasing height, do

begin
4. Find a configuration c that minimizes c,(q) - C,(p) while obeying the con-

straints I U {Ap,(d) _> 0};
5. if p(c)q(c) is a cut in S(c) then
6. if flow(O,(c)) > cap(qb,(c))

then add to I the constraint Ap,(d) _ flow(,Op,(c)) + 1
end;

7. Find a configuration c satisfying I that minimizes c,, - c 1 ;
8. Route the sketch S(c) and output the result.

4.5. Detail8 of the implementation

* The computation of flows in line 2 is performed using Algorithm F of the
previous section. The cuts themselves may be found by any straightforward method,
as the algorithm's run time will be dominated by other factors.

. Line 3 requires that pairs of feature endpoints be enumerated in order of
vertical separation. Writing down the pairs and sorting them would waste large
amounts of space; the following approach is better. First sort the feature end- 1i
points by y-coordinate, and associate with each endpoint the next higher endpoint.
Place these pairs in a priority queue, and keep the queue sorted by difference in
y-coordinates. At each iteration of the loop (lines 3-6), withdraw the best element
{p, q} from the priority queue, and process the potential cut Op.. Then find the next
endpoint q' above q in y-coordinate, if one exists, and insert the pair {p, q'} into the
priority queue. This method uses linear space, and no more time than other parts
of Algorithm C.

9 To solve the constraint system in line 4, it suffices to compute longest paths
from the vertex p(p). Dijkstra's algorithm can be used for the purpose, because
every edge in the graph has weight zero or less. (Normally, Dijkstra's algorithm is
used to find shortest paths, and then the edge weights must be nonnegative.) To
see why edge weights are nonpositive, consider the case when all the displacements
d, are zero. Using the assumption that the initial configuration is legal, one can
prove that it obeys all constraints. Hence if di - d, >! aj is a constraint in I, then
it holds under the assigment d = 0. The result is that 0 - 0 > aij, that is, ae is
nonpositive.

* Once the algorithm finds the key configuration c in line 4, line 5 must deter-
mine whether Op,(c) is a cut. To do so it tests all features in S(c) for intersection
with O,(c).
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* Line 6 invokes Algorithm F to calculate flow(4bN(c)). It requires as input
the hurdle sequence of Op(c), which can be found by checking every hurdle that

lies between y. and y. in altitude. Include only those hurdles of S(c) that cross

p(c)q(c). The hurdle sequence should, of course, be sorted by y-coordinate, and all
crossings must be from bottom to top. Presorting all the hurdles by y-coordinate
eliminates the need to sort each individual hurdle sequence.

* In line 7, Dijkstra's algorithm should be used once again, this time computing
longest paths in I from module 1, which is the left edge of the bounding box of
the sketch. If desired, the designer or design system may add other simple linear
inequalities to I, provided that they are all satisfied by the initial layout S(O).

* The configuration c found in line 7 specifies the optimal compacted sketch,
but that sketch must still be constructed at line 8. For the purpose of applying
Algorithm R, the single-layer wire-router of [6], it is not necessary to construct a
complete sketch S(c), but only to produce something called the rubber-band equiv-

alent (RBE) of S(c). The features of the RBE are the same as those of S(c), and
can be located easily. The wires of the RBE can be found as follows. The set of
points not lying on features or hurdles of S(c) is a simply connected region, and its
boundary is polygonal (if we allow vertices at infinity). Hence it can be triangulated
quickly, and the resulting set of triangles forms a tree under the obvious adjacency
relation. We can therefore find for each wire w in S(c) the shortest sequence of
triangles that a routing of w could pass through, and apply Algorithm W from [61
to find the wire in the RBE corresponding to w.

4.6. Complexity analyaja

The worst-case time complexity of Algorithm C is 0(ISI'). (Recall that ISI is
the size of the data structure S. If S = (FW), then ISI = iF + IWI.) We can
obtain a more precise bound, however, in terms of IGI and III. What follows is a
line-by-line breakdown of time costs.

(1) According to Section 3, the preprocessing phase takes time O(IFIIWI +
IGI log 2 IGI), where G is the adjacency graph of the input sketch (F,W).

(2) Computing constraints for horizontal cuts is no harder than computing them
for the other cuts, so line 2 may be ignored.

(3) Enumerating pairs of feature endpoints takes O(IF 2 log IFI) time, O(log IFI)
time per pair. This quantity is dominated by other terms.

(4) Line 4 calls Dijkstra's algorithm, which runs in time O(IE + IVI log IVI) on
a graph (V, E) [3]. Since JEJ is 0(111), and IVI is n, the number of modules,

line 4 uses e(1I + n log n) time in each of e(1F 2) iterations.

(5) Line 5 takes O(IFI) time per potential cut, and hence line 6 dominates it.

(6) Algorithm F uses O(IFI log' IGI) time, so line 6 costs 0(IFI log, IGI) time in
total.
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(7) The call to Dijkstra's algorithm in line 7 contributes a neglible quantity to
the running time.

(8) Careful analysis shows that the construction and routing of the output sketch
requires only O(IFIJGI log IGI) time [6].

Thus the total running time of Algorithm C is

O(IFIIWf + IGI log2 IGI + IF12(1I1 + nlogn) + IFI 1log, IG + IFIIGI log lG).

Since III = O(IF f) and IGI = O(IFIIWI), this expression yields the claimed bound
of o(IsI4). The only term that exceeds O(IS13 log 2 ISI) is the term F 1 211 due to
repeated constraint solving at line 4.

Which part of Algorithm C will dominate in practice is not clear. In the worst
case, IGI can be as high as O(IFIIWI), if some fl(jWI) wire segments intersect fl(IFI)
hurdles each, and the crossings are not redundant. In most situations, however, IGj
should be closer to IFI. Making reasonable estimates about the average run time
of Algorithm F and the density of the constraint graph I. one can predict that
actual performance for the entire operation will probably approach e(IFI3+' ) for
some small positive value of e.

Space usage is easier to evaluate: the main contributors are the graphs G and I,
along with Algorithm R, which may use O(IFIIGI) space in the worst case. Thus
the worst case bound is O(IFI2IWI), but none of the data structures of Algorithm C
or Algorithm R is likely to approach its maximum size. The actual figure will
depend on the number of crossings between wires and certain cuts in the sketch
(e.g., hurdles), and will probably look like e(IFIl+a) for some constant a E (0, 1).

5. The abstract compaction algorithm

To prove the correctness of Algorithm C, the compaction algorithm, we proceed
by way of an intermediate procedure called Algorithm A, the abstract compaction
algorithm. The name derives from the fact that Algorithm A (which is not re-
ally an algorithm at all, but just a mathematical definition) abstracts the essential
element of Algorithm C, namely the iterative definition of the subspace of configu-
rations to be searched for a minimum width sketch. Algorithm A defines a sequence
A0 , Ai,..., A, of increasingly restricted subsets of the configuration space. These
sets will to correspond to sets of configurations satisfying the constraint system I
at different stages of Algorithm C.

This section is devoted to the statement of Algorithm A and its preconditions.
The next section demonstrates its correctness by proving the following theorem.

Theorem 6. The output A,. of Algorithm A is the connected component
of {c E C(S) : S(c) is routable} that contains the initial configuration 0.

Finally, Section 7 demonstrates the correspondence between Algorithms C and A,
and in particular that A, is precisely the set of configurations that satisfy the final
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S .constraint system I of Algorithm C. Together with Theorem 6, this implies that the
constraints generated by Algorithm C are both necessary and optimal, if only convex
constraints are allowed. Finally, because Algorithm C finds an optimal configuration
among those satisfying the constraint system, it will follow that Algorithm C is
correct, and that it finds the best solution available to any algorithm of its type.

There are at least two reasons for taking this abstract approach. First of all, it
simplifies the correctness proof by separating the mathematical from the algorithmic
concerns. Second, and more important, it clarifies the assumptions on which the
compaction algorithm relies. An understanding of these assumptions will allow
Algorithm C to be easily generalized.

5.1. Definitiorn and assumptions

For the purpose of discussing Algorithm A, we must use a more technical defi-
nition of potential cut. Let P and Q be features in the original sketch S, and let
be a continuous function that defines, for each configuration d in C(S), a line seg-
ment between the features P(d) and Q(d) in the sketch S(d). The function 0 is a
potential cut if the position of 0(d) relative to P(d) and Q(d) depends only on the
displacement between P(d) and Q(d), namely ApQ(d) = d (q) - d,(p) (stretching
the notation slightly). In other words, 0 must satisfy the following condition.

If d and d' are any two configurations such that ApQ(d) = Apq(d'), then
Vp(d') is equal to t(d') shifted to the right by do(p) - dM(p) units.

Following the terminology of the previous section, a configuration d is said to protect
a potential cut V) if 0(d) is not a cut, or if cap(o(d)) _> flow(tk(d)). If p and q
are points in the original sketch S, then a typical potential cut is the function OP
defined by Op(d) = p(d)q(d).

The input to Algorithm A is a legal sketch S together with a sequence T(S) =

(..,... , 'km}of potential cuts of S; the output is a set of configurations Am. As a
precondition of Algorithm A, the potential cuts T(S) must determine the routability
of the modified sketches S(d). Specifically, they must have the following property:

Routability property. If S(O) is routable, and for all X E (0, 1] the configura-
tion Ad protects every 1 E %P(S), then S(d) is routable.

The capacities of the potential cuts must also have a special property:

Bitonic property. For each 0 E %l(S), and each line L in configuration
space, there is a point c of L at which the capacity cap(t(c)) is minimal,
and cap(Vt(d)) is nondecreasing as d moves away from c along L.

In principle, my compaction method depends on only one further fact:

Ordering property. Suppose that the following statements hold.
(1) The configuration d protects 0kj for all i < k.
(2) The configuration d lies on the boundary of the set {C E R" : k(c) is a cut).
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(3) The cut a is properly contained in the line segment 0,k(d).
Then a is safe in S(d).

In practice, of course, we also desire that the sequence (0i) be computable in poly-
nomial time. As we show in Section 7, the sequence of potential cuts examined by
Algorithm C has all these desirable properties.

5.2. The abstract algorithm

Before plunging into the algorithm, I shall provide a brief overview. Algorithm A
computes a sequence of polytopes in configuration space, each one contained in
the last. The configurations in the kth polytope will protect the first k potential
cuts in T(S). To process 10k, the kth potential cut, the algorithm first determines
whether 0jk is unsafe in any configuration in the current polytope. If not, the
algorithm ignores kh. Otherwise, it defines a set of unacceptable configurations
in which the capacity of Oh falls below some critical value. This set contains all
configurations in the current polytope that fail to protect Ot. Its complement
consists of two half-spaces: one in which the lower endpoint of tkt is far to the right
of the upper endpoint, and one in which the situation is reversed. Because the initial
configuration is always acceptable, it must fall into one half-space or the other; the
kth polytope is determined by intersecting the (k-1)st polytope with the half-space
that contains 0. Thus Algorithm A only considers configurations reachable from
the initial one; just as in Figure 7, one is not allowed to pass through a region of
unacceptable configurations to reach a safe configuration on the other side.

Algorithm A. (Finds the set of acceptable modifications of a sketch.)
Input: a legal sketch S with n modules specified, and a sequence (et,--. , ,) of

potential cuts of S with the routability, bitonic, and ordering properties.
Output: the configuration set A,,.
Local variables: an integer k, polytopes A,, of acceptable configurations, sets Uk

of unacceptable configurations, and inequalities -,,.
1. Ao ,C(S);
2. for k - 1 to m do

begin
3. if some c E Ak,,- does not protect k then

begin
4. Uk 4- {d E Rf: cap(ok(d)) < flow(0kk(c))};

Note: If the endpoints of Okk lie on the features P and Qk, then Ul has the form
{d: A- < AphQ,(d) < A+}, and either 0 E (-co, A-] or 0 E [A+, oo).

"'"._ k ApQ(d) > A', if 0> A+;
5. - "- ApQo(d) _ A-, if 0 < A-;
6. Ak 4-- {d E A-I: d satisfies -k}

end

7. else At.- AA-,; Uk-- 0

end.
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Some remarks about Algorithm A are in order.
e The set Ut is defined in terms of an arbitrary configuration c E A,,-, that

fails to protect O'k. In the next section, we show that U, is independent of
the choice of c.

9 Observe that -k is a simple linear inequality between dg(p,) and d,(Q.), and
hence defines a closed half-space in R". Since A0 is convex, the set A, is
therefore convex for each k.

* In the light of the following results, the definition of At in lines 5-6 may be
read "A, is the component of A_. - U that contains 0."

6. Correctness of the abstract algorithm

This section proves the correctness of Algorithm A, by which we mean the following
theorem.

Theorem 6. The output Am of Algorithm A is the connected component
of {c E C(S) S(c) is routable) that contains the initial configuration 0.

In other words, Algorithm A above defines precisely the set of routable configura-
tions that are reachable from the initial one. In the process of proving Theorem 6,
we develop some results that will be very useful later on, both in proving Algo-
rithm C correct and in finding correct extensions of it.

6.1. Body of the correctness proof

The following lemma is fundamental to the correctness proof. Its proof is lengthy
and fairly deep, so we defer it to the end of this section.

Definition. Two configurations, d and d', are equivalent with respect to a
potential cut tk if the hurdle sequences of tk(d) in 5(d) and 0k(d') in S(d')
are identical. This relation is written "d ; d' with respect to ip".

Lemma 7. Let d and d' be configurations in C(S), let L be {(1 -A)d+Ad':
E E [0, 1]), and let 0 be a potential cut whose capacity has at most one local

minimum on L. Suppose also that whenever b E L lies on the boundary of
{c E C(S) : 0(c) is a cut), all the cuts contained in the line segment 0(b)
are safe. Then:

(1) If d' protects ip but d does not, then cap(4O(d')) >_ flow(O(d)).
(2) If neither d nor d' protects 0, then d ; d' with respect to 0.

Lemma 7 provides us with the following lemma, our main tool for proving The-
orem 6. We shall use this lemma frequently.

Lemma 8. (Potential Cut Lemma) Suppose 1 < k < m, and let d and d'

be configurations in A_. 1.
(1) If d' protects , but d does not, then cap(0), (d')) > flow(0&,(d)).
(2) If neither d nor d' protects t,,, then d f d' with respect to O.
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* According to Lemma 3 of Section 3, the flow across a cut depends only upon the
cut's hurdle sequence. Therefore, configurations that are equivalent with respect
to 01 have equal flow across O. Statement (2) of Lemma 8 thus implies that any
two configurations d,d' E Ah-. that fail to protect OPk must satisfy flow(0k,(d)) =
flow(0W.(d')). Thus Lemma 8 fulfills a promise made in the previous section, to show
that the sets Ut defined in lines 4 and 7 of Algorithm A are uniquely determined.

The proof of Lemma 8 depends on several facts about the set A,,-. In particular,
the lemma makes no sense unless A,- is well defined. On the other hand, A is
well defined only if the Potential Cut Lemma holds for At- 1. We must therefore
prove Lemma 8 in parallel with the following claim.

Lemma 9. For 1 < k <_ m, the following statements hold:
(3) The set A is well defined by Algorithm A.
(4) The point 0 lies in A.
(5) Every configuration in At protects the potential cuts 'P1 through OPk.

Proof of Lemma* 8 and 9. The proof proceeds by induction on k, with the inductive
hypothesis being the conjunction of (3), (4), and (5). A basis for this hypothesis is easily
established at k = 0: the set Ao is obviously well defined, 0 E Ao by definition, and
condition (5) is vacuously true. So assume k > 1. The key step is the proof of (1) and (2),
in Lemma 8, from the inductive hypothesis.

(1,2) We apply Lemma 7 to the configurations d and d' and the potential cut OA,. By
the bitonic property, the capacity function of 'P is minimal on at most one interval of L.
And since A,,-, is a convex set, the inductive hypothesis implies that every configuration
c E L protects the potential cuts 'P1 through OPa-1. This fact, combined with the ordering r
property, demonstrates the final assumption of Lemma 7. The conclusion of that lemma is
identical to the conclusion of Lemma 8.

(3) For A, to be well defined, the set U defined in line 4 of Algorithm A must have the
specific form {d E C(S) : A- < Ap Q,(d) < A+}, for some A- and A+. Recall that U
includes a point d if and only if the capacity cap(/a(d)) of OA,(d) is less than the constant
f = flow(01i (c)). But by the definition of a potential cut, O, (d) depends only on Ap.Q. (d).
Hence it suffices to show that the set

(ApQ. (d) : d E R" and cap(OA,(d)) < f}

is a nonempty open interval (A-,A+). Choose a line L through c on which AphQ,(d) is
not constant. The bitonic property of Ph implies that the set (d E L : cap(op,(d)) < f I is a
open interval of L; it is nonempty because it contains c. Since APQA:(d) is a nonconstant
linear function on L, the set

{Ap Q.(d) : d r L and cap(01,(d)) < f }

is also a nonempty open interval. This is enough, because every value Ap,,Q (d) is repre-
sented by some d E L.

(4) By the induction hypothesis, 0 E A,%-,. If every c e A.-, protects 0k,, then 0 E A.
trivially. Otherwise, apply (1) to 0 and c. (Because S(0) is routable, 0 protects Oh by
Lemma 1.) So cap(oh(0)) _ flow(O,(c)), whence 0 f U,. Because ApQ e (O) = 0, by
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definition, we have 0 (A ", ). Thus 0 satisfies the constraint ',. defined at line 5, and
so 0 E A,.

(5) Since A, g A,-,, every configuration d E Ak protects 01 through Oh-L, by the
induction hypothesis; it remains to show that every d E A, protects Oh. Suppose that
d E A#,- I fails to protect 01,. Then Uy, is nonempty, and is defined in terms of some
configuration c. By part (2), d s c with respect to O,, and in particular flow(OA,(d)) =

flotv(0,(c)). Because d does not protect Oh,, certainly cap(b,(d)) < flow(Ok(d)), and it
follows that d E UA,. But the constraint 4 excludes all members of Uk from A,%. Therefore
d Ak.

From the above lemma, most of Theorem 6 follows quickly. First of all, the

initial configuration 0 is a member of A,. by claim (4). Second, if d E Am, then for
all A E [0, 1), the configuration Ad lies in A., and hence protects every 0 E Tl(S) by
claim (5). Therefore by the routability property, S(d) is routable for all d E A,.
It remains to argue that Am is a single connected component of {d E C(S)
S(d) is routable}. To do so, we make use of an elementary topological result. A
subset X of a topological space is said to surround another subset Y if Y lies in the
interior of X, and the closure of Y is contained in X. If X surrounds the nonempty
set Y, then Y is a connected component of the complement of X - Y.

Lemma 10. For 0 < k < m, the set A. is surrounded by the region

Xk X Ab uU Ak-1 n Uk)

Proof. It suffices to show that A. is closed and Xl, is open, because clearly A.. g X,. First
the former: consider the boundary of A,.. It must be contained in the boundary of A0,
together with the set of points that satisfy some constraint 4 with equality. If a point
d lies on the boundary of Ao, then two distinct modules in S(d) intersect, and hence any
configuration sufficiently close to d does not correspond to a routable sketch. Therefore d
cannot lie on the boundary of Ao, and as a consequence, A,, is just the set of configurations
that satsify the inequalities 4: a closed, convex polytope in RO.

Now we prove by induction on k that X, is open. The basis case, Xo - Ao, is left
to the reader. Let k > 0, and consider the nontrivial case when Uk is nonempty. From
the definition of X we derive X, = (X1,_ 1 - Ah- 1) u At. U (A,-, - U,), which reduces to
X,_- (A,.-_I - U - A,). The set B = AA,.-.I - Uh - A, is the intersection of A-. with one
of the cloud half-spaces forming the complement of U; it remains to show that B is closed
in XA,_L. But A,_I is just the subset of X_ I satisfying the constraints - -, for all i < k, so
B is X _1 intersected with finitely many closed half-spaces. Therefore X, = XA,- 1 - B is
open. 0

Setting k = m in Lemma 10, we find that U(A,-I n U,) disconnects A. from
the rest of R". Hence the connected component of (d E C(S) : S(d) is routable}

": ~ that contains Am cannot be a proper superset of Am, unless it also contains a point

in A,-, U for some i. But if d E A.-, corresponds to a routable sketch, then it
protects 0j, and statement (1) of the Potential Cut Lemma applies to d and the
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Figure 8. The Line segment sA - 0(bA) just as it ceases to be a cut.

configuration c E A.-, used to define U,. It shows that Wap(O'(d)) > flow (O(c)),

which means that d f U. Therefore d E A,_4 n U implies that S(d) is not routable.

So A,. is precisely equal to the component of {d E C(S) : S(d) is routable) that

contains 0. This completes the proof of Theorem 6, except for Lemma 7.

6.2. Core of the correctne" proof

We now justify the lemma upon which Theorem 6 is ultimately based. Its proof

explains the purpose of the bitonic and ordering properties.

Lemma &7. Let d and d' be configurations in C(S), let L be {(1 -A)d+Ad :

A E (0, 11}, and let 0 be a potential cut whose capacity has at most one local

minimum on L. Suppose that whenever b E L lies on the boundary of

(c E R : 0(c) is a cut}, all the cuts contained in the line segment 0(b) are

safe. Then:
(1) If d' protects 0 but d does not, then cap(0(d')) >_ flow(O(d)).

(2) If neither d nor d' protects 4', then d x d' with respect to 4'.

Proof. For A E [0, 11, let b.% represent (1 - A)d+ Ad'. As A varies from 0 to 1, S(b,%) varies

from S(d) to S(d'), and the line segment a,% = 0(b,%) is sometimes a cut, and sometimes

it crosses features. Denote the flow across s.% by fA = flow(O(b,%)), and the capacity (or

"length") of BA by 1A = csp(O(b,%)).

We first argue that the set Z =-(A e [0, 1] : A is a cut), considered as a subspace of

the unit interval, is open. Let s,% be a cut; say it connects the features P and Q. Because

S(b,%) is compatible with So, there is some positive distance between a,, and every feature

but P and Q; no other features can touch the endpoints of a,. And since ax and the module

positions in S(bA) are all continuous functions of A, there is some neighborhood of A whose

points all correspond to cuts. So Z is open, and hence it consists of disjoint intervals, each

one open in (0, 11. We now focus attention on one of these intervals, call it A. If a lies on

the boundary of A, then o. is not a cut. The following claim is the crux of the argument.

Claim: For all A 4 A, and all a on the boundary of A, the configuration b,% protects 4'

unless 1, < I.

First note that the flow f,% does not vary as A moves through A. The motion of S(b,) is

continuous, and 4' is a continuous function, so no features can jump across s.% while A r A.

Therefore any configuration bA, for A r A, is equivalent to any other with respect to 4.

Hence by Lemma 3,f,, is a constant /i for all A E A. " :
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Now consider the sketch S.. At this point, one or more features have just contacted line

segment a., and hence s. is broken up into a series of cuts -... . . (See Figure 8.)
Because b. is on the boundary of the set of configurations that make 0 a cut, all the cuts
p.- are safe in configuration b.. Adding up the inequalities that define safety, we find that

i= i ,.

Compared to the flow fA, the right-hand sum cannot be deficient by more than j. Even if
each of the j intervening features were terminals, they could only contribute j extra wires
to IA. And by the definition of capacity, the left-hand sum is bounded by 1. - j. The result
is that 1. > fA- By definition, if b% fails to protect 0 then 1A < fA, so 1A < 10.

We now prove the lemma. Both parts of the lemma assume that d fails to protect 0, so
we may assume that so = 0(d) is a cut, and that 10 < fo. Suppose first that d and d' are
equivalent with respect to 0. Then flow(o(d')) = flow(O(d)). If d' protects 0, then also
cap(O(d')) >_ flow(O(d')), and the two inequalities together establish (1). Conclusion (2)
is trivial if d a d'. Now suppose that d and d' are not equivalent with respect to t'.

Then there exists A E (0, 11 such that a is not a cut. Let c be the smallest such value,
and consider the interval A = [0, a). Since d = bo does not protect 0, the claim implies
to < I.. Now by assumption, 1A as a function of A has at most one local minimum in [0, 1].
Because 10 < l., the minimum value of 1. must occur in the interval (-oo, a). Hence 1A is
nondecreasing on [a, 11, and we have 11 2! 1. ! fo. This proves conclusion (1), because 11
is cap(o(d')) and fo is flow(oi(d)). Now we prove (2) by showing that d' protects 4. If 81
is a cut, let # be the largest value such that 8p is not a cut. (One must exist, for we are
assuming d 9 d'.) Applying the claim to the interval A = (,, 1], we find that b, protects
because 11 _ to. Since b, = d', this proves statement (2). 0

7. Correctness of the implementation

In this section, we build upon the results of Sections 3 and 6 to prove the correctness
of Algorithm C, the concrete compaction algorithm. The hard part of the proof is
over: Algorithm A, which is an abstract description of the compaction algorithm,
is proven correct by Theorem 6 of the previous section. It remains to show that
Algorithm C is just a special case of Algorithm A. There are two steps to this pro-
cess: first, to identify the potential cuts that Algorithm C uses, and show that they
satisfy the preconditions of Algorithm A; and second, to prove an explicit corre-
spondence between the quantities computed by the two algorithms. The correctness
of the compaction algorithm will then follow from the correctness of its subroutines
(Algorithms F and R) along with Theorem 6.

7.1. Precondition. of Algorithm A

Our first task is to show that the potential cuts used by Algorithm C satisfy
the requirements of Algorithm A, namely the routability, bitonic, and ordering
properties. The potential cuts in question are the following.

(1) Horizontal potential cuts 01,..., each of the form OP. where either p or
q is a feature endpoint..4,
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(2) Diagonal potential cuts Ot,... , , each of the form OM where both p and '-

q are feature endpoints.
We may assume that the potential cuts are numbered in the order that Algorithm C
examines them, because we know it checks the horizontal ones first. Denote the
input sketch by S, and the sequence ...... , ?) by Q[(S).

Lemma 11. The sequence T(S) has the ordering, bitonic, and routability
properties.

Proof. The sequence 'l(S) is easily seen to have the ordering property. Let k satisfy I <
k < m, and suppose that 01,(d) contains a smaller cut. For d to lie on the boundary of the
set {c E R O : Oh(c) is a cut) means that the features interrupting Ojk(d) must do so at their
endpoints, and furthermore that 01(d) is not horizontal. Therefore all the cuts contained
in Oji(d) are cuts between feature endpoints, and they have smaller height than O. Hence
they appear in the list 4u,...

The bitonic property is also easy to verify, because any potential cut of the form Op.
has a convex capacity function. The reason is that cap(#,(d)) is essentially the norm of a
vector that is linear in the components of d, namely (p - q) + (d(p) - dg(,))I, where I is the
unit vector (1,0). Convexity now follows from elementary properties of norms.

Verifying the routability property is somewhat more difficult. Let d be a configuration
such that Ad protects all 0 E *(S) for all A E [0,1]. By Theorem 2, the Planar Routability
Theorem, it suffices to show that d protects every critical potential cut of S. Consider an
arbitrary feature endpoint p of S and another feature Q. The critical potential cut XpQ WJ
between them is defined by XpQ(d) = p(d)q(d) where q(d) is the closest point on the
feature Q(d) to the point p(d). If the horizontal line drawn through p intersects Q, then
XQ is always horizontal because Q is either a horizontal or vertical line segment. In this
case, XpQ is equal to one of the potential cuts O with 1 ! i <h h, so that d automatically
protects XpQ. i Q is a vertical line segment, then its closest point to p is always the same
endpoint of Q, and Xpq = O for some i > h. So we may assume that Q is horizontal and
is displaced vertically from p. Furthermore, we may assume that XpQ(d) does not share an
endpoint with Q(d). Then xpQ(d) must be a vertical line segment. Now either XpQ(O) is
also vertical, or there is some configuration ad such that XpQ(ad) is vertical and shares an
endpoint with Q(ad). In either case, we have a configuration ad that protects Xp, and
such that cap(xQ(Ad)) is minimal at A = a.

We now suppose that d does not protect Xp, and apply Lemma 7 to the potential cut
XpQ and the configurations d and ad. The capacity cap(xpq(d)) is a convex function of d, as
one may check. Hence it has at most one local minimum on the line segment L between ad
and d. Furthermore, if Ad lies on the boundary of (c E R* : xQq(c) is a cut), then xp.(Ad)
intersects feature endpoints only, and hence the cuts contained in XpQ(Ad) are instances of
the potential cuts 0,%+ through 0m. Since we are assuming that Ad protects every potential
cut in *(S), the cuts in XpQ(Ad) are safe. Thus ad and d satisfy part (1) of Lemma 7; we
conclude that cap(xQ(ad)) >_ flow(XpQ(d)). But cap(X .g(ad)) :5 cap(xQ(d)), because
the capacity of XpQ(Ad) is minimal at A = a. Combining these inequalities, we find that
flow(x$,Q(d)) <_ cap(xQ(d)): the configuration d protects XpQ. Therefore the potential
cuts 'l(S) have the routability property. 0
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7.2. Correspondence between the algorithm.

The final phase of our proof strategy involves showing that the constraints com-
puted by the concrete algorithm define the same space as the constraints -Sk defined
abstractly. This fact will imply that the compaction algorithm searches precisely
the set A. of acceptable configurations, and correctness will follow quickly. In or-
der to state the correspondence, let C0 denote the set of configurations satisfying
the constraint system I defined at line 2 of Algorithm C, and let C,' denote those
configurations satisfying I after the kth iteration on the loop in lines 3-6.

Lemma 12. For all k satisfying h < k < m, the sets C,-, and Ak are
identical.

Proof. Recall that h is the number of horizontal cuts in the sequence *(S). We prove
the lemma by induction on k, the basis case being k = h. Any configuration in A, is
in C(S), because A g Ao, and also protects the horizontal potential cuts, according to
part (5) of Lemma 9. Therefore A, 9 Co. On the other hand, you may check that when
the constraint _., exists, for k < h, it corresponds to the potential cut in Io induced by 01,.
(Here we Lemma 5, which shown the correctness of Algorithm F.) Therefore Co _ A,.

For the inductive step, suppose that CA,_f,_ 1 = A_ 1. We first draw a correspondence
between the configurations c found by Algorithms A and C. The key observation is that the
configuration c found by Algorithm C at line 4 minimizes the capacity cep(o&(c)) over all
t E C .-.- 1 = A,-,. It does so by minimizing the horizontal separation t .(c)I between
the points p(c) and q(c), since their vertical separation is fixed. (Dijkstra's algorithm is
applicable here, because according to Lemma 9, the initial configuration 0 satisfies the
constraint system.) We wish to argue that if any d E Aj,_ fails to protect 0,, then
neither does c. Suppose to the contrary that c protects O, but d E Ah_. does not. Then
by the Potential Cut Lemma, statement (1), we have cep(O'(c)) flow(0',(d)). But
cap(OA, (c)) < cap(0. (d)) by the choice of c, so cap(O, (d)) _ flow(OA,.(d)), and d protects O,

after all. Thus line 4 of Algorithm C correctly implements line 3 of Algorithm A.
There are now two cases to consider. If the configuration c does protect 0',, then so

do all configurations in At,-,. Therefore Algorithm A sets Ah to A,,, and Algorithm C
does not change I, so we have Cj,_, = A, as desired. On the other hand, if c does not
protect Op,, then Algorithm C adds the constraint

A,,(d) > flow(,((c)) +1

to 1, where p and q are defined by 4', = O and z, 2_ z. It remains to show that the above

inequality is the constraint S, defined by Algorithm A. We first evaluate U,,:

U, = {d ( C(S) cap(%,(d)) < flow(,,(c))}

= (d E C(S) : max(IA, (d)I, Iv, - VpI) - 1 <flow(oM(c))}

Since cap(Op,(c)) < flow(p(c)), it follows that IV, - *1 - I < flow(#O,(c)), and so

U, = {d E C(S) :IA,(d)I <flow(O, (c)) + 1).

For brevity, we consider only the ce where p lies on P, and q lies on Qj,, and not the
reverse. A little algebra then shows that A+ - (z, - zx,) + flow(oM(c)) + I and that
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0> A+. Hence S, is the desired constraint

dg - dp(p) ! (.Tv - z,) + flowto4,(c)) + 10

We conclude that the configurations that obey the final constraint system I in
Algorithm C are precisely those in Am. (If the design system adds extra constraints
to I, some configurations in Am may be excluded.) Theorem 6, which character-
izes Am, now implies that every configuration obeying I is routable, and that the
constraints I are optimal, unless the constraints are allowed to define a disconnected
region of configuration space. Finally, line 7 of Algorithm C finds an optimal con-
figuration obeying the constraint system I. The resulting sketch is guaranteed to
be routable, and hence Algorithm R, the single-layer router from [61, can regenerate
the layout. This completes the proof of correctness of the compaction algorithm.

8. Extensions and discussion

The purpose of this section is to suggest several ways in which the compaction al-
gorithm can be improved, and to discuss its practical value. I regret that I cannot
report here on any generalizations of Algorithm C to wiring models involving mul-
titerminal nets, wires of different widths, or sketches with nonrectilinear features
and design rules. The reason is that such generalizations would require extending
Theorem 2 and Lemmas 1 and 3 to other wiring models, and the theory of planar
routing is not yet sufficiently advanced. Nevertheless, preliminary results indicate
that many natural extensions of Algorithm C are possible. I hope to report these
results, along with the mathematics that justifies them, in my Ph.D. dissertation.

8.1. Optimizations of Algorithm C

Both the time and space performance of Algorithm C can be improved by re-
ducing the size of the adjacency graph. One therefore wishes to choose hurdles
in such a way as to minimize the number of crossings between wires and hurdles.
Although we defined hurdles so that every obstacle has only one hurdle incident on
its right, this property is unimportant. The hurdles can be chosen to be any set of
horizontal cuts such that the set of points inside the bounding box, but not lying on
a hurdle or a feature, is simply connected. Equivalently, if obstacles and hurdles are
considered as the nodes and edges, respectively, of a graph, then this graph must
be a tree.

A minimum-cost spanning tree algorithm can be used to find a set of hurdles
that cross as few wires as possible. Every horizontal cut between different obstacles

is a potential hurdle, but we may restrict our attention to horizontal cuts that are
incident on feature endpoints. There are at most O(IFI) such cuts, and they can be
thought of as the edges of a graph H over the obstacles. The cost of an edge will
be the number of crossings of the cut by wires in the original sketch; costs can be
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computed efficiently using a scanning algorithm as in [6]. The hurdles are chosen
to be the edges in a minimum-cost spanning tree of the graph H.

Another way to speed up Algorithm C is to ignore potential cuts that cannot
generate constraints. For example, if a potential cut Op has minimal capacity in
the initial configuration, it cannot generate a constraint. We have noticed this
already in the proof of Lemma 12; it follows from statement (1) of the Potential
Cut Lemma. Therefore, the algorithm need only check potential cuts Op for which
Ixg - zpl > Jyq - ypi- Second, the lower endpoint of a feature need not be considered
in conjunction with feature endpoints above it, and symmetrically for the upper
endpoint. Similarly, potential cuts whose position in the initial configuration travels
right from the left endpoint of a horizontal feature need not be considered, and
symmetrically for right endpoints. The correctness of these optimizations can be
proven using the techniques of Lemma 12. Finally, a potential cut Op. with z > zI
need not be checked if in all configurations d E C(S) with Ap(d) > ly, - ypj, the
line segment Op(d) is not a cut.

None of these improvements affect the fact that Algorithm C requires fl(F 5 )
time, not just in the worst case, but in almost every case. To reduce this amount,
one must avoid considering most of the potential cuts. Most constraints in practice
are likely to be local, so one can try to ignore all potential cuts of sufficiently large

"" height. If one solves the constraint system before evaluating all the potential cuts, r

and the routing algorithm succeeds, then compaction may be terminated. If the
routing algorithm fails, more potential cuts must be considered.

8.2. Summary and conclusion

The main theoretical contribution of this paper is a polynomial-time algorithm
that compacts IC (or PCB) layouts while introducing jogs into wires in an optimal
fashion. The power of Algorithm C comes from the elimination of wires as hard
objects in the layout, and their replacement by constraints between modules. The
use of routability conditions to solve placement problems is not new 17,13,161, but
until now, only channel routing problems had been considered. The reason is that
the routability of general planar layouts was not adequately understood until very
recently [1,61. To characterize planar routability requires a robust model of a circuit
layer, such as the sketch, and a fair amount of theory. In addition, some care is
needed to apply routability conditions to the compaction of general sketches; the
correctness of Algorithm C is nontrivial.

On the practical side, my compaction method can be expected to produce high-
quality layouts with little designer intervention, saving both in chip area and design
time. Its primary drawback lies in its use of computational resources. Although
there are good reasons to believe that its worst-case performance bounds will not
be apprnached in practice, resource limitations may prevent it from being used to
compact large layouts all at once. Algorithm C is amenable to use at all levels of the
design, however, so that hierarchical compaction can alleviate much of the resource
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problem. It also may be suited to use in channel routing, where the number of '."

components is not too great. The idea, which was implemented at Bell Labs (see
Acknowledgements) is as follows: the channel is artificially inflated, so that an
an ordinary channel routing algorithm, which may have difficulty with crowded
channels, may succeed; then a compactor like Algorithm C, with the ability to

insert arbitrarily complex jogs, is applied in order to compact the channel back to
the proper size.

One important question left open by my research is whether the compaction
method embodied in Algorithm C is more efficient in practice than the straightfor-
ward algorithm, namely, inserting jog points into each wire where it crosses each
horizontal gridline, and solving the resulting constraint system normally. This tech-
nique is evidently simpler than that of Algorithm C, and may be more efficient in

practice. On the other hand, it should be possible to extend Algorithm C to sit-
uations where wires and modules may contain diagonal segments, and grid-based
algorithms break down.
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